
96

4.3 Parameters and Arguments

Functions represent processes. A function is a named block of code that can be
invoked from any point in the program. Much of the power of functions comes
from our ability to supply inputs to these processes. The inputs to a function
are called its arguments and they are represented inside the function definition
by variables called parameters. In this section we will describe parameters and
their relationships to arguments.

As we said in Section 4.2, the parameters are listed inside the parentheses
in the function header. For example, we might have the following header to a
function:

def f o o (x , y) :

This is the start of the definition of a function named foo. The parameters
for this function are named x and y. These are variables, just like any other
variables used in the function with one exception: variables x and y are given
initial values when the function is called. The call of foo has the form

f o o (< f i r s t a r g >, <s e c o n d a r g >)

When this is executed < first arg > is evaluated and its value becomes the start-
ing value for parameter x. Similarly, <second arg> is evaluated for the initial
value of y. The body of foo is then executed until it ends or returns.

As a first example, we will write a function to calculate a 20% tip to add to
the bill for a meal. To keep our arithmetic simple at mealtime, in cases where
the tip is not an exact dollar amount we will round up to the next dollar. The
tip calculation is easy: we get 20% of a value by multiplying by 0.2, and we
round up with the ceiling function from the math library (see Section 2.4). For
a given cost we compute the tip as ceil (cost∗0.2)l our function returns this
value:

def Tip (mealCost) :
t ipAmount = c e i l (mealCost ∗0 . 2)
return t ipAmount

Here is a full program that makes use of this:

4.3. PARAMETERS AND ARGUMENTS 97

def Tip (mealCost) :
t ipAmount = c e i l (mealCost ∗0 . 2)
return t ipAmount

def main () :
done = F a l s e
while not done :

amount=eval (input (” E n t e r a meal cos t , o r 0 to e x i t : ”))
i f amount == 0 :

done = True
else :

print (” Your t i p s h o u l d be $%d . ”%Tip (amount))
print (”The t o t a l meal c o s t i s $%.2 f . ”%

(amount+Tip (amount)))

main ()

Program 4.3.1: Computing a tip

Note that the argument to function Tip() has a different name than the func-
tion’s parameter: the argument is called amount while the parameter is mealCost.
This is typical; we name the function’s parameter something that is internally
descriptive within the function. The argument can be anything we wish to ap-
ply the function to. At the time of the call the argument is evaluated and it
is this value that is given to the function as an initial value for the parameter;
any name present in the argument is irrelevant once its value is retrieved. For
example, the following calls to function Tip are all valid:

• Tip(23)

• Tip(3∗5+8)

• x = 23
Tip (x)

It is generally not a good idea to give the parameters of a function the same
names as variables elsewhere in the program, since this gives the impression
that these are the same variable. The next program prints 2 as the value of
myVariable, even though function Change() seems to change this value to 33.

def Change (m y V a r i a b l e) :
m y V a r i a b l e = 33

def main () :
m y V a r i a b l e = 2

98

Change (m y V a r i a b l e)
print (m y V a r i a b l e)

main ()

What is happening here is that function Change() and function main() each have
their own variables called myVariable and these variables are unrelated; a change
to one does not affect the other.

If a function has multiple parameters, the arguments in a call to the function
must match the parameters: there must be one argument for each parameter
and they must appear in the same order. For example, function PrintMultiples ()
in the next program has two parameters: the first is a string and the second
an integer. We could call this with PrintMultiples (”bob”, 5) to print the string
”bob bob bob bob bob ”, but we couldn’t call it with PrintMultiples (5, ”bob”)
or with PrintMultiples (”bob”).

def P r i n t M u l t i p l e s (s t r i n g , count) :
print ((s t r i n g+” ”)∗ count)

def main () :
P r i n t M u l t i p l e s (”bob” , 5)

main ()

A parameter is just like any other variable of a function, with the one ex-
ception that it gets an initial value from the argument at the time the function
is called. Like all other variables it can be modified within the function, and
like all other variables it is invisible outside the function. It might be tempting
to write something like the following, but the function call SetTo23(x) does not
change the value of x, in spite of its name.

def SetTo23 (x) :
x = 23

def main () :
x = 5
SetTo23 (x)
print x

main ()

Function SetTo23() changes its own variable x and has no affect on the variable
x inside function main(). This program prints 5, not 23.

Examples

We will now give several examples of the way programs can be designed with
functions.

4.3. PARAMETERS AND ARGUMENTS 99

First, think back to the prime number programs we wrote in Section 3.4.
Each of these contained a block of code that determined whether a given number
was prime. This task is clearer if it is performed by a function such as the
following:

def I s P r i m e (number) :
This r e t u r n s True i f number i s prime ,
and Fa l s e o t h e rw i s e
for f a c t o r in range (2 , number) :

i f number % f a c t o r == 0 :
return F a l s e

return True

Note that this function returns a Boolean value that just says if its argument is
prime or not.

We can put this into a program that checks all the numbers between 2 and
some upper limit and prints the primes. The result is Program 4.3.2:

This p r i n t s a l l o f the pr ime numbers up to
a l i m i t s u p p l i e d by the u s e r

def I s P r i m e (number) :
This r e t u r n s True i f number i s pr ime ,
and Fa l s e o t h e rw i s e
for f a c t o r in range (2 , number) :

i f number % f a c t o r == 0 :
return F a l s e

return True

def main () :
max = eval (input (” E n t e r th e l a r g e s t number o f check : ”))
for x in range (2 , max+1):

i f I s P r i m e (x) :
print (”%d i s pr ime . ” % x)

main ()

Program 4.3.2: Improved version of Program 3.4.4

Note how much easier to read this program is than Program 3.4.4. The main()
function consists of an input-statement, and a loop with a conditional print-
statement. The condition on the print-statement is almost grammatical En-
glish: ” if IsPrime(x)” is easy to understand. In general, the more natural lan-
guage we can work into a program the easier it is to read, and the more likely
we are to write it correctly in the first place.

100

Similarly, here is a version of Program 3.4.5, which prints a table of the first
N prime numbers. It is tempting to think of adding another function to handle
the printing, but this is more complex than it might seem. All of the variables
of a function go away after the function call, so a function could not easily keep
track of the number of values that are on the current line. One way to handle
that might be to build up a list of all of the values for the current line and
send them to a function to print; that will need to wait until we have a more
thorough treatment of lists in Chapter 5.

This p r i n t s the f i r s t N pr ime numbers ,
where the v a l u e o f N i s s u p p l i e d by the u s e r .
The output i s p r i n t e d i n C columns .

def I s P r i m e (number) :
This r e t u r n s True i f number i s pr ime ,
and Fa l s e o t h e rw i s e
for f a c t o r in range (2 , number) :

i f number % f a c t o r == 0 :
return F a l s e

return True

def main () :
N = eval (input (”How many pr ime numbers do you want ? ”))
C = eval (input (”How many columns o f output do you want ? ”))
x = 2
pr imeCount = 0
l i n e C o u n t = 0
while pr imeCount < N:

i f I s P r i m e (x) :
print (”%7d ” % x , end= ’ ’ ’ ’)
pr imeCount = primeCount + 1
l i n e C o u n t = l i n e C o u n t + 1
i f l i n e C o u n t == C :

p r i n t ()
l i n e C o u n t = 0

x = x + 1
i f l i n e C o u n t != 0 :

p r i n t ()

main ()

Program 4.3.3: Improved version of Program 3.4.5

4.3. PARAMETERS AND ARGUMENTS 101

Here is a third example with prime numbers. This time we will find twin
primes: pairs of consecutive odd numbers that are both prime, such as 11 and
13. There is an unproven conjecture in Mathematics claiming that there are
infinitely many twin prime pairs. Our program would require some contorted
code if we only used loops, but with our IsPrime() function it is quite simple.
Our condition for printing a pair (x, x+2) is just that both x and x+2 are prime:
if IsPrime(x) and IsPrime(x+2)

This program l o o k s through the numbers up to a l i m i t
f o r p a i r s o f tw in p r imes .

def I s P r i m e (number) :
This r e t u r n s True i f number i s pr ime ,
and Fa l s e o t h e rw i s e
for f a c t o r in range (2 , number) :

i f number % f a c t o r == 0 :
return F a l s e

return True

def main () :
print (” Thi s program l o o k s f o r t w i n p r i m e s . ”)
max = eval (input (” E n t e r th e l a r g e s t number o f check : ”))
for x in range (3 , max+1):

i f I s P r i m e (x) and I s P r i m e (x +2):
print (”(%d , %d) a r e t w i n p r i m e s . ” % (x , x +2))

main ()

Program 4.3.4: Finding twin primes

Note that the function IsPrime() is identical in each of these programs. Because
we write functions as stand-alone objects in programs, function definitions can
frequently be copied from one program to another. Once a function is written
and debugged, you can use it in any programming situation where it is appro-
priate. This makes the job of the programmer easier, and makes our programs
much more likely to be correct.

As a final example for this section we will write a program that inputs strings
and determines whether they are palindromes the same forwards as backwards,
such as ”bob” or ”racecar”. To make this more interesting, palindromists usually
ignore white space, punctuation and capitalization. Probably the most famous
palindrome in English is ”A man, a plan, a canal: Panama.” Here are some
others: ”Dammit, I’m mad!”, ”Step on no pets.”, ”Was it a rat I saw?” and
”Are we not drawn onward, we few, drawn onward to new era?”

Our strategy in developing this program is to write it one step at a time.

102

Whenever we need a new activity in the program we will create a function to
handle it, first writing the call to the function and then writing the function
itself. The steps are:

a. A loop that prompts the user for input, reads strings, and decides if each
string is a palindrome. This should also print the result for the user.

b. To determine whether a string is a palindrome, we can reverse it and
compare that to the original.

c. To handle punctuation and white space, we can walk through the letters
of the string and remove anything that isn’t a letter. Since strings are
immutable, we build up a new string consisting of just the letters of the
original.

d. To handle capitalization, as we build up the new string we insert the lower-
case form of each letter. The string method lower() is useful for this: if s
is a string, s . lower() is a string with the same letters as s, all converted
to lower-case.

The first step is a straightforward application of the input loop model from
Section 3.7:

def main () :
done = F a l s e
while not done :

p h r a s e = input (” E n t e r a s t r i n g : ”)
i f p h r a s e == ”” :

done = True
else :

i f <th e p h r a s e i s a pa l indrome >:
print (”’% s ’ i s a p a l i n d r o m e . ”%

p h r a s e)
else :

print (”’% s ’ i s not a p a l i n d r o m e . ”%
p h r a s e)

Palindromes - First Version

This has pseudo-code for the condition on the print statement:

i f <th e p h r a s e i s a pa l indrome >:

We can define a function to handle this check. To keep its name similar to its
usage in English, we will call the function IsPalindrome(). Its job is to determine
whether the variable phrase holds a palindrome; phrase is the only input it needs.
This means we can state our condition as

i f I s P a l i n d r o m e (p h r a s e) :

4.3. PARAMETERS AND ARGUMENTS 103

Our function definition needs a parameter as a placeholder for the argument.
Since this is a string we will just use the letter s:

def I s P a l i n d r o m e (s) :

To conclude the first step, we will make this function return True for all strings.
This allows us to make sure the initial part of our program is working correctly.
The following program isn’t complete, but it is a working program. It allows
the user to enter strings until a blank string is given. It claims that each string
is a palindrome.

def I s P a l i n d r o m e (s) :
This r e t u r n s True i f s t r i n g s i s a pa l i nd rome
and Fa l s e i f i t i s not .
return True

def main () :
done = F a l s e
while not done :

p h r a s e = input (” E n t e r a s t r i n g : ”)
i f p h r a s e == ”” :

done = True
else :

i f I s P a l i n d r o m e (p h r a s e) :
print (”’% s ’ i s a p a l i n d r o m e . ”%p h r a s e)

else :
print (”’% s ’ i s not a p a l i n d r o m e . ”%p h r a s e)

main ()

Palindromes continued

Our next step is to make the IsPalindrome() function more useful. We defined
a palindrome as a string that reads the same forwards and backwards. This is
easy to code into a function:

def I s P a l i n d r o m e (s) :
i f s == R e v e r s e (s) :

return True
else :

return F a l s e

This involves another function: Reverse(s) is a function we will write that re-
turns the reversal of string vars. How do we do that? It is easy to use a for-loop
to walk through the letters of a string. We want to build up a new string, which
we will call answer, that is the reversal of s. Variable answer starts off as the

104

empty string. At each step we add the new letter onto answer. If we add it onto
the end of answer, we will make an exact copy of string s. If we add the new
letter onto the beginning of answer, we get the reversal of string s. If you don’t
see this, note that the last letter of string s will become the first letter of the
answer, the next-to-last letter of s will be the second letter of the answer, and
so forth.

def R e v e r s e (s) :
answer = ””
for c in s :

answer = c + answer
return answer

Adding this to our program gives the first version of our palindrome checker:

4.3. PARAMETERS AND ARGUMENTS 105

def R e v e r s e (s) :
This r e t u r n s the r e v e r s a l o f s t r i n g s :
i f s i s ’ abc ’ t h i s r e t u r n s ’ cba ’ .
answer = ””
for c in s :

answer = c + answer
return answer

def I s P a l i n d r o m e (s) :
This r e t u r n s True i f s t r i n g s i s a pa l i nd rome
and Fa l s e i f i t i s not .
s = S t r i p P u n c t u a t i o n (s)
i f s == R e v e r s e (s) :

return True
else :

return F a l s e

def main () :
done = F a l s e
while not done :

p h r a s e = input (” E n t e r a s t r i n g : ”)
i f p h r a s e == ”” :

done = True
else :

i f I s P a l i n d r o m e (p h r a s e) :
print (”’% s ’ i s a p a l i n d r o m e . ”%p h r a s e)

else :
print (”’% s ’ i s not a p a l i n d r o m e . ”%p h r a s e)

main ()

Palindromes Step 2

For the last steps, we need to eliminate the punctuation. A new function
StripPunctuation() will handle that; this function will take a string s and return
a new string consisting of just the alphabetic letters of s, all in lowercase. We
should think carefully about where to call this function. We could call it in
main(), as soon as we read the string and see that it is not empty:

p h r a s e = input (” E n t e r a s t r i n g : ”)
i f p h r a s e == ”” :

done = True
else :

p h r a s e = S t r i p P u n c t u a t i o n (p h r a s e)
i f I s P a l i n d r o m e (p h r a s e) :

106

...

This is not good. The user will enter a phrase such as ”Dammitit I’m mad!”
and the program will respond that ’dammitimmad’ is a palindrome. This is
confusing because ’dammitimmad’ is not what the user entered. A more appro-
priate placement for the call to StripPalindrome() is within the IsPalindrome()
function. It is this function that is trying to decide if a string is a palindrome.
Anything it does to the string will be invisible to the main() function. Accord-
ingly, we will keep main() as it stands and change the IsPalindrome() function
to:

def I s P a l i n d r o m e (s) :
s = S t r i p P u n c t u a t i o n (s)
i f s == R e v e r s e (s) :

return True
else :

return F a l s e

All that remains is to write StripPunctuation(). As with Reverse(), this walks
through the letters of string s and places them in an answer string. This time
we add the new letters onto the end of answer, so that we are making a copy
of s. We add only the alphabetic letters to delete the punctuation and white
space elements. How do we tell which are the alphabetic characters? One way
to test of variable c contains a lower-case letter is to determine if it is between
’a’ and ’z’:

i f ’ a ’ <= c and c <= ’ z ’ :

We could do the same thing with upper-case letters and get code that starts

i f (’ a ’ <= c and c <= ’ z) o r (’A ’ <= c and c <= ’Z ’) :

Another way is to use a string method that tests if all of the elements of the
string are alphabetic::

i f c . i s a l p h a () :

Finally, we use the string method lower() to insure that we add the lower-case
version of each letter to answer. Here is the code for function StripPunctuation():

def S t r i p P u n c t u a t i o n (s) :
answer = ””
for c in s :

i f c . i s a l p h a () :
answer = answer + c . l o w e r ()

return answer

4.3. PARAMETERS AND ARGUMENTS 107

This completes the program. Here is complete code for our palindrome program,
including comments to make it more readable:

108

This program r ead s s t r i n g s from the u s e r and
say s i f they a r e pa l i nd r omes : the same when
read backwards as when read f o rwa rd s

def S t r i p P u n c t u a t i o n (s) :
This r e t u r n s a s t r i n g j u s t l i k e s on l y a l l
o f the non− l e t t e r s a r e removed and the l e t t e r s
a re a l l changed to lower−ca se .
answer = ””
for c in s :

i f c . i s a l p h a () :
answer = answer + c . l o w e r ()

return answer

def R e v e r s e (s) :
This r e t u r n s the r e v e r s a l o f s t r i n g s :
i f s i s ’ abc ’ t h i s r e t u r n s ’ cba ’ .
answer = ””
for c in s :

answer = c + answer
return answer

def I s P a l i n d r o m e (s) :
This r e t u r n s True i f s t r i n g s i s a pa l i nd rome
and Fa l s e i f i t i s not .
s = S t r i p P u n c t u a t i o n (s)
i f s == R e v e r s e (s) :

return True
else :

return F a l s e

def main () :
done = F a l s e
while not done :

p h r a s e = input (” E n t e r a s t r i n g : ”)
i f p h r a s e == ”” :

done = True
else :

i f I s P a l i n d r o m e (p h r a s e) :
print (” ’% s ’ i s a p a l i n d r o m e . ” % p h r a s e)

else :
print (” ’% s ’ i s not a p a l i n d r o m e . ” % p h r a s e)

main ()

Program 4.3.5: Palindromes: final version

